Кажется, неплохая статья о том, как анализировать данные

Да-да, нельзя просто пыриться в гугл-аналитику и молиться, чтобы кривая посещений поползла вверх. Нужно делать какие-то выводы, что-то менять и проверять. Однако, как убедиться в том, что вы не предлагаете какой-то нонсенс?

Вот несколько советов о том, что ж делать-то:

1. Почистите свои данные. Нельзя просто взять и начать интерпретировать полученные результаты, нужно с ними поработать, очистив от лишних всплесков и нерелевантных значений. А уже после этого делать выводы.

2. Держите в голове вопрос, на который вы хотите ответить при помощи данных. Иначе рискуете собрать много бесполезных цифр.

3. Описывайте данные простыми словами. Такие описания помогут вам не запутаться, и быстрее понимать их значение другим людям.

4. Проверьте, что контекст сбора данных был верным. Если вы собрали данных за два года, то половина из них может оказаться нерелевантной из-за изменившегося контекста (например, был проведён редизайн сайта).

5. Собирайте данные из разных источников, чтобы собрать полную картину и проверить данные на противоречия.

6. Выделите свои основные KPI и смотрите на них. Так не потонете в пучинах таблиц и цифр.

7. …но сравнивайте их и с другими метриками, которые идут с KPI в противоречие.

8. Ищите не только данные, которые подтверждают ваши гипотезы, но и те, которые их опровергают. Хоть так соблазнительно закончить исследование, если вы вроде как нашли доказательства ваших инсайтов, но потратьте немного времени и подумайте, где вы можете найти опровержение — возможно, вас ждёт сюрприз.

9. Исследуйте аномалии. Если вы видите наравномерные всплески и провали ключевых метрик, потратьте усилия, чтобы понять их причины. Возможно, это проявления какой-то большой проблемы.

10. Категоризируйте и кластеризируйте качественные и количественные данные — так с ними будет проще работать.

11. Визуализируйте ваши данные. Порой, так будет проще делать выводы, чем просто пырясь в таблицу.

12. Используйте цветовое кодирование… очевидно. ✅

13. Используйте когортный анализ, когда это возможно. (Ну такое)

14. Используйте специальные тулы. (Тут в статье реклама видимо)

https://databox.com/how-to-analyze-data